Predicting Energy Consumption and CO2 Emissions of Excavators in Earthwork Operations: An Artificial Neural Network Model

نویسندگان

  • Hassanean S. H. Jassim
  • Thomas Olofsson
چکیده

Excavators are one of the most energy-intensive elements of earthwork operations. Predicting the energy consumption and CO2 emissions of excavators is therefore critical in order to mitigate the environmental impact of earthwork operations. However, there is a lack of method for estimating such energy consumption and CO2 emissions, especially during the early planning stages of these activities. This research proposes a model using an artificial neural network (ANN) to predict an excavator’s hourly energy consumption and CO2 emissions under different site conditions. The proposed ANN model includes five input parameters: digging depth, cycle time, bucket payload, engine horsepower, and load factor. The Caterpillar handbook’s data, that included operational characteristics of twenty-five models of excavators, were used to develop the training and testing sets for the ANN model. The proposed ANN models were also designed to identify which factors from all the input parameters have the greatest impact on energy and emissions, based on partitioning weight analysis. The results showed that the proposed ANN models can provide an accurate estimating tool for the early planning stage to predict the energy consumption and CO2 emissions of excavators. Analyses have revealed that, within all the input parameters, cycle time has the greatest impact on energy consumption and CO2 emissions. The findings from the research enable the control of crucial factors which significantly impact on energy consumption and CO2 emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Analysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran using Artificial Neural Networks

The present study attempts to investigate the potential relationship between input energies, performance production of greenhouse basil, and greenhouse gases emitted from this product. The data were collected from 24 greenhouses using a questionnaire and verbal interaction with farmers. Results of the study showed that the total input energy and total output energy for basil production were 119...

متن کامل

Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017